An unconstrained minimization method for solving low-rank SDP relaxations of the maxcut problem

نویسندگان

  • Luigi Grippo
  • Laura Palagi
  • Veronica Piccialli
چکیده

In this paper we consider low-rank semidefinite programming (LRSDP) relaxations of the max cut problem. Using the Gramian representation of a positive semidefinite matrix, the LRSDP problem is transformed into the nonconvex nonlinear programming problem of minimizing a quadratic function with quadratic equality constraints. First, we establish some new relationships among these two formulations and we give necessary and sufficient conditions of global optimality. Then we propose a continuously differentiable exact merit function that exploits the special structure of the constraints and we use this function to define an efficient and globally convergent algorithm for the solution of the LRSDP problem. Finally, we test our code on an extended set of instances of the max cut problem and we report comparisons with other existing codes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving SDPs for synchronization and MaxCut problems via the Grothendieck inequality

A number of statistical estimation problems can be addressed by semidefinite programs (SDP). While SDPs are solvable in polynomial time using interior point methods, in practice generic SDP solvers do not scale well to high-dimensional problems. In order to cope with this problem, Burer and Monteiro proposed a non-convex rank-constrained formulation, which has good performance in practice but i...

متن کامل

SpeeDP: A new algorithm to compute the SDP relaxations of Max-Cut for very large graphs

We consider low-rank semidefinite programming (LRSDP) relaxations of unconstrained {−1, 1} quadratic problems (or, equivalently, of Max-Cut problems) that can be formulated as the nonconvex nonlinear programming problem of minimizing a quadratic function subject to separable quadratic equality constraints. We prove the equivalence of the LRSDP problem with the unconstrained minimization of a ne...

متن کامل

A Projected Gradient Algorithm for Solving the Maxcut Sdp Relaxation∗

In this paper, we develop a specialized algorithm for solving the semidefinite programming (SDP) relaxation of the maximum cut (maxcut) problem. The maxcut problem has many applications, e.g., in VLSI design and statistical physics (see [2, 4, 5, 19, 21]). Several algorithms have been proposed to find either exact or approximate solutions to this problem. As for many combinatorial optimization ...

متن کامل

A Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems

In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...

متن کامل

Row by row methods for semidefinite programming

We present a row-by-row (RBR) method for solving semidefinite programming (SDP) problem based on solving a sequence of problems obtained by restricting the n-dimensional positive semidefinite constraint on the matrix X. By fixing any (n − 1)-dimensional principal submatrix of X and using its (generalized) Schur complement, the positive semidefinite constraint is reduced to a simple second-order...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program.

دوره 126  شماره 

صفحات  -

تاریخ انتشار 2011